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ABSTRACT: This paper studies the long-term behavior of time-averaged functionals of Markov chains defined 

on standard Borel state spaces, focusing on chains that admit transition densities with respect to a σ-finite reference 

measure and satisfy uniform ergodicity. We consider sequences of measurable functions that are uniformly 

bounded across all states and time steps, and analyze the convergence of their time-averaged conditional 

expectations given past states. Using the uniform ergodicity property, we rigorously show that these time-averaged 

expectations converge to corresponding expressions computed with respect to the chain's invariant density. This 

provides a general framework for evaluating steady-state behavior of functionals in stochastic systems, including 

those arising in H2 norm computations for systems with Markovian jumps. The use of standard Borel spaces as the 

state space for the Markov chain ensures well-defined measurability and integrability, supporting the applicability 

of these results to a wide class of Markov processes and stochastic control problems.  
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1. INTRODUCTION 
    The analysis of the H2 norm in Markov 

processes defined over general Borel state 

spaces plays a fundamental role in 

understanding and designing stochastic 

dynamical systems. The H2 norm quantifies a 

system's performance in response to white-

noise disturbances and serves as a key tool in 

optimal control and stability analysis. In 

systems with Markovian jumps - where 

transitions between states are governed by a 

Markov chain taking values in a general Borel 

space - a rigorous theoretical framework is 

essential for evaluating and optimizing system 

behavior. 

    Recent studies have emphasized the 

importance of the asymptotic behavior of the 

H2 norm in such systems. For instance, Costa 

and Figueiredo [2] investigated quadratic 

control with partial information for discrete-

time jump systems with the Markov chain in a 

general Borel space, while Hou and Zhang [3] 

studied H2/H∞ control design for detectable 

periodic Markov jump systems. Further 

contributions include full-information H2 

control for Borel-measurable Markov jump 

systems with multiplicative noises [4], H2 

control for Markov jump linear systems (MJ- 

LSs) with detector-based partial information 

[5], and extensions to infinite-dimensional 

MJLs [8, 9]. Recent works also address 

robustness and stability analysis for discrete-

time MJLS on Borel spaces [10, 11]. 

    Despite these advances, a comprehensive 

understanding of the limits and asymptotic 

properties of the H2 norm for general Borel-

space Markov processes remains incomplete. 

This paper aims to contribute to this area by 

establishing rigorous convergence results for 

time-averaged functionals of Markov chains 

with general Borel state spaces, leveraging 

uniform ergodicity conditions [6]. These 

results provide a solid foundation for the 

computation and optimization of the H2 norm 

in complex stochastic systems under 

uncertainty, bridging the gap between 

theoretical development and practical control 

applications. 
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 2. PRELIMINARIES 
Let (𝑋, 𝑑) be a metric space with distance 𝑑, 
and let this space be endowed with the 

topology 𝑇(𝑑) generated by open balls  

𝐵𝑑(𝑥, 𝜀) = {𝑦 ∈ 𝑋  :   𝑑(𝑥, 𝑦) < 𝜀}. 
We recall that the Borel 𝜎 -algebra 𝐵(𝑋) is the 

smallest 𝜎 -algebra containing all open sets:  

𝐵(𝑋) = 𝜎(𝑇(𝑑)). 
A Polish space is a complete and separable 

metric space (𝑋, 𝑑) and its Borel 𝜎 -algebra is 

countably generated. 

A standard Borel space (𝑆, 𝐵) is a measurable 

space, measurably isomorphic to a Borel 

subset of a Polish space. That is, there is a 

Polish space (𝑋, 𝑑), a Borel subset 𝑋0 ∈ 𝐵(𝑋) 

and a bijection 𝜙  :   𝑆 → 𝑋0 such that both 𝜙 

and 𝜙−1 are measurable and 𝐵 =
𝜙−1(𝐵(𝑋0)). 
The following result is known (see [7] and the 

references therein). 

 Proposition 1. Every standard Borel space 

(𝑆, 𝐵) has a countably generated 𝜎 -algebra. 

 Proof. We know that the associated Polish 

space (𝑋, 𝑑) is separable, which implies that 

its topology has a countable base {𝑈𝑛}𝑛∈𝑁 . 

Hence the Borel 𝜎 algebra on 𝑋0 ⊆ 𝑋,  𝐵(𝑋0) 

is countably generated (as a sub – 𝜎 -algebra 

of 𝐵(𝑋) ) and we can write  

𝐵(𝑋0) = 𝜎({𝑈𝑛 ∩ 𝑋0  :   𝑛 ∈ 𝑁}). 
Taking preimages under 𝜙, we have  

𝐵 = 𝜎({𝜙−1(𝑈𝑛 ∩ 𝑋0):   𝑛 ∈ 𝑁}), 
which shows that 𝐵 is also countably 

generated. 

 

Let (𝛺, 𝐹, 𝑃) be a probability space, (𝑆, 𝐵(𝑆)) 

be a standard Borel space and 𝜇 be a 𝜎 -finite 

measure defined on 𝑆. Let {𝜂𝑛}𝑛∈𝑁 be a time-

homogeneous Markov chain with the state 

space 𝑆. We recall that a minimal requirement 

for defining a Markov chain on a general 

measurable state space (𝑆, 𝐵) is that 𝐵 is 

countably generated (see [6]) and this 

condition is satisfied when (𝑆, 𝐵(𝑆)) is 

standard Borel  

We also assume that the following hypothesis 

holds 

H1: {𝜂𝑛}𝑛∈𝑁 is a time-homogeneous Markov 

chain such that: 

1. its initial probability distribution has a 

density 𝑓0 > 0 that is absolutely integrable 

with respect to 𝜇 and 𝑃[𝜂0 ∈ 𝐵] =
∫  

𝐵
𝑓0(𝑠)𝜇(𝑑𝑠);  

2. it has a transition kernel  

𝑝(𝑙, 𝐵) = 𝑃[𝜂𝑛+1 ∈ 𝐵 | 𝜂𝑛 = 𝑙],  𝑙 ∈ 𝑆,  𝐵
∈ 𝐵(𝑆). 

which admits a nonnegative density 𝑔(𝑠 | 𝑙) 

with respect to 𝜇, which is measurable on 

𝑆 × 𝑆, i.e.  

𝑝(𝑙, 𝐵) = ∫  
𝐵

𝑔(𝑠 | 𝑙)𝜇(𝑑𝑠), 𝐵 ∈ 𝐵(𝑆), 𝑙 ∈ 𝑆, 

and 0 ≤ 𝑔(𝑠 | 𝑙) < 𝐴 for some constant 𝐴 >
0.  

We note that ∫  
𝑆

𝑔(𝑠 | 𝑙)𝜇(𝑑𝑠) = 1 and we 

recall that a transition kernel  𝑝  :   𝑆 ×
𝐵(𝑆) → [0,1] has the following properties: 

𝑝(𝑠,⋅) is a probability measure on (𝑆, 𝐵(𝑆)) for 

every 𝑠 ∈ 𝑆, and 𝑝(⋅, 𝐵) is 𝐵(𝑆) -measurable 

for every 𝐵 ∈ 𝐵(𝑆). 

The 𝑛 -step transition kernel satisfies the 

Chapman--Kolmogorov equation  

𝑝𝑛+𝑚(𝑙, 𝐵) = ∫ 
𝑆

𝑝𝑛(𝑙, 𝑑𝑠)𝑝𝑚(𝑠, 𝐵), 

𝑛, 𝑚 ∈ 𝑁. 
Let 𝐿1(𝜇) be the linear space of all real valued, 

𝜇 measurable functions 𝑓 defined on 𝑆 that 

satisfy the condition ∫  
𝑆

|𝑓(𝑠)|𝜇(𝑑𝑠) < ∞. We 

define the linear operator  

(𝑇𝑓)(𝑙): = ∫ 
𝑆

𝑔(𝑙 | 𝑠)𝑓(𝑠)𝜇(𝑑𝑠), 

for any 𝑓 ∈ 𝐿1(𝜇). According to [1], the 

operator 𝑇  :  𝐿1(𝜇) → 𝐿1(𝜇) is linear and 

bounded and its adjoint 𝑃 is defined on 𝐿∞(𝜇) 

as  

(𝑃𝑓)(𝑠): = ∫ 
𝑆

𝑔(𝑙 | 𝑠)𝑓(𝑙)𝜇(𝑑𝑙). 

If we denote 𝜋𝑘+1(𝑙) = 𝐸[𝑔(𝑙 | 𝜂𝑘)] (see [1-

2]), we get  

𝜋𝑘+1(𝑙) = 𝐸[𝐸[𝑔(𝑙 | 𝜂𝑘)]|𝜂𝑘−1
]

= 𝐸 [∫ 
𝑆

𝑔(𝑙 | 𝑖)𝑔(𝑖 | 𝜂𝑘−1)𝜇(𝑑𝑖)] 

= ∫ 
𝑆

𝑔(𝑙 | 𝑖)𝐸[𝑔(𝑖 | 𝜂𝑘−1)]𝜇(𝑑𝑖) 

= 𝑇(𝐸[𝑔(𝑖 | 𝜂𝑘−1)])(𝑙) = 𝑇(𝜋𝑘)(𝑙). 

In the above computation, the expectation and 

the integral can be interchanged by Tonelli’s 

theorem, since the functions involved are 

nonnegative and measurable. It follows that  
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𝜋𝑘(𝑙) = 𝑇(𝜋𝑘−1)(𝑙), for all 𝑘 ≥ 1 

We also note that 𝜋1(𝑙) = 𝐸[𝑔(𝑙 | 𝜂0)] =
∫  

𝑆
𝑔(𝑙 | 𝑖)𝜈(𝑖)𝜇(𝑑𝑖) = 𝑇(𝜈)(𝑙) which 

implies that 𝜋𝑘(𝑙) = 𝑇𝑘(𝜈)(𝑙) ≥ 0.  
It can be proved inductively (see [2]) that 

∫  
𝑆

[𝜋𝑘(𝑙)]𝜇(𝑑𝑙) = ∫  
𝑆

𝑇𝑘(𝜈)(𝑙)𝜇(𝑑𝑙) =

∫  
𝑆

𝜈(𝑙)𝜇(𝑑𝑙) = 1 , which implies that 𝜋𝑘(𝑙) is 

a density. Since 𝑃[𝜂𝑛+1 ∈ 𝐵] = 𝐸[𝑃[𝜂𝑛+1 ∈
𝐵|𝜂𝑛

]] = ∫  
𝐵

𝐸[𝑔(𝑖 | 𝜂𝑛)]𝜇(𝑑𝑖) =

∫  
𝐵

𝜋𝑛+1(𝑖)𝜇(𝑑𝑖) and it follows that 𝜋𝑛+1(𝑙) 

is the density of 𝜂𝑛+1 with respect to 𝜇. 

 

3. UNIFORM ERGODICITY 
In this section, we recall some basic concepts 

related to ergodicity and uniform ergodicity of 

Markov chains on general state spaces. These 

notions provide the theoretical framework for 

studying the long-term behaviour and 

convergence properties of the chain. 

 

Definition 1. [6] For two probability measures 

𝜈1 and 𝜈 on a measurable space (𝑆, 𝐵(𝑆)) , the 

total variation distance between them is 

defined as  
‖𝜈1 − 𝜈‖ 𝑇𝑉 = 𝑠𝑢𝑝

𝐴∈𝐵(𝑆)
|𝜈1(𝐴) − 𝜈(𝐴)|.         (1) 

If 𝜈1 and 𝜈 admit densities 𝑔1 and 𝑔 with 

respect to a common reference measure 𝜆, then 

two equivalent expressions of (1) are given by  
‖𝜈1 − 𝜈‖ 𝑇𝑉 = 

∫ 
𝑆

|𝑔1(𝑥) − 𝑔(𝑥)|𝜆(𝑑𝑥) = 

𝑠𝑢𝑝
𝑓,|𝑓|≤1

| ∫ 
𝑆

𝑓(𝑥)(𝑔1(𝑥) − 𝑔(𝑥))𝜆(𝑑𝑥)|. 

Definition 2. A probability measure 𝛱 on 

(𝑆, 𝐵(𝑆)) is said to be invariant for the 

transition kernel 𝑝 if  

𝛱(𝐵) = ∫ 
𝑆

𝑝(𝑠, 𝐵)𝛱(𝑑𝑠),  ∀𝐵 ∈ 𝐵(𝑆). 

 

Definition 3. The chain {𝜂𝑛}𝑛∈𝑁 is said to be 

ergodic if there is an invariant probability 

measure 𝛱 for the kernel 𝑝 such that 𝑝𝑛(𝑙,⋅) →
𝛱(⋅) as n→ ∞ in total variation for all 𝑙 ∈ 𝑆. 

 

Definition 4. [6] The chain {𝜂𝑛}𝑛∈𝑁 is said to 

be uniformly ergodic if there is an invariant 

measure 𝛱 for the kernel 𝑝 and the constants 

𝐶 < ∞ and 𝜌 ∈ (0,1) such that  

‖𝑝𝑛(𝑠,⋅) − 𝛱(⋅)‖ 𝑇𝑉 ≤ 𝐶𝜌𝑛 , ∀𝑠 ∈ 𝑆,  𝑛 ≥ 0. 
 

For some equivalent formulations of uniform 

ergodicity, we refer to Theorem 16.02 in [6]. 

In the rest of this paper, we will assume that 

H1 and the following hypothesis hold: 

 

H2: The Markov chain {𝜂𝑛}𝑛∈𝑁 is uniformly 

ergodic. 

 

The following result is known (see Proposition 

4.1 from [1] and Theorem 16.2.1 from [6]) 

 

Lemma 1. There is an invariant probability 

measure 𝛱 for the kernel 𝑝 which has the 

following properties: 

1) 𝛱 is absolutely continuous with respect to 𝜇, 

that is, there is a nonnegative function 𝜋 ∈
𝐿1(𝜇) such that  

𝛱(𝑑𝑠) = 𝜋(𝑠)𝜇(𝑑𝑠), 
∫  

𝑆
𝜋(𝑠)𝜇(𝑑𝑠) = 1; 

2) the density 𝜋 is a fixed point of the operator 

𝑇, i.e.  

𝜋(𝑙) = 𝑇(𝜋)(𝑙), 𝑙 ∈ 𝑆 

3) there are positive constants 𝐶1 < ∞ and 

𝜌1 ∈ (0,1) such that  

∫ 
𝑆

|𝑇𝑛(𝜈)(𝑠) − 𝜋(𝑠)|𝜇(𝑑𝑠) ≤ 𝐶1𝜌1
𝑛. 

 

4. CONVERGENCE OF TIME-

AVERAGED FUNCTIONALS 

UNDER UNIFORM ERGODICITY 

CONDITIONS 
Time-averaged functionals of a Markov chain 

provide a natural way to quantify long-term 

system behaviour and steady-state 

performance. For chains on standard Borel 

spaces, uniform ergodicity ensures 

convergence that is independent of the initial 

state. This section establishes that, under 

uniform ergodicity, the time-averaged 

expectations of bounded measurable 

functionals converge to the corresponding 

averages with respect to the chain’s invariant 

measure, providing a rigorous foundation for 

performance analysis in stochastic systems.  

 

Lemma 2. Assume that hypotheses H1 and H2 

are satisfied. Then for any integers 𝑛 > 𝑘 ≥ 0 
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and  𝑖 ∈ 𝑆, 𝑇𝑛−𝑘(𝑔(⋅ | 𝑙))(𝑖)  is the density of 

the (𝑛 − 𝑘 + 1) -step transition kernel  

𝑝𝑛−𝑘+1(𝑙,⋅)  evaluated at  𝑖. Moreover,  

𝐸[𝑔(𝑖 | 𝜂𝑛)| 𝜂𝑘 = 𝑙] = 𝑇𝑛−𝑘(𝑔(⋅ | 𝑙))(𝑖). 
 

Proof. We proceed by induction on 

 𝑚 = 𝑛 − 𝑘 . 
Base step:  𝑚 = 1. By Chapman--

Kolmogorov equation, the 2-step kernel is  

𝑝2(𝑙, 𝐵)

= ∫ 𝑝(𝑙, 𝑑𝑠1)𝑝(𝑠1, 𝐵)
𝐵

= ∫ 𝑔(𝑠1| 𝑙)𝜇(𝑑𝑠1) ∫ 𝑔(𝑖 |𝑠1)𝜇(𝑑𝑖) =
𝐵𝑆

 

∫ ∫𝑔(𝑖 |𝑠1)𝑔(𝑠1| 𝑙)𝜇(𝑑𝑠1)𝜇(𝑑𝑖)
𝑆𝐵

 

 By definition of 𝑇, the inner integral is 

exactly 𝑇(𝑔(⋅ | 𝑙))(𝑖). Hence,  

𝑝2(𝑙, 𝐵) = ∫  
𝐵

𝑇(𝑔(⋅ | 𝑙))(𝑖)𝜇(𝑑𝑖), 

 showing that  𝑇(𝑔(⋅ | 𝑙))(𝑖)  is the density of 

𝑝2(𝑙,⋅). 

Inductive step: Assume that for some  𝑚 ≥ 1,  

𝑝𝑚+1(𝑙, 𝐵) = ∫  
𝐵

𝑇𝑚(𝑔(⋅ | 𝑙))(𝑠1)𝜇(𝑑𝑠1). 

 Then, the (𝑚 + 2) -step transition kernel 

satisfies  

𝑝𝑚+2(𝑙, 𝐵) = ∫ 
𝑆

𝑝(𝑠, 𝐵)𝑝𝑚+1(𝑙, 𝑑𝑠) 

= ∫ 
𝑆

(∫  
𝐵

𝑇𝑚(𝑔(⋅ | 𝑙))(𝑠1)𝜇(𝑑𝑠1)) 

∙ 𝑔(𝑖 |𝑠1)𝜇(𝑑𝑖) 

= ∫  
𝐵

(∫ 
𝑆

𝑇𝑚(𝑔(⋅ | 𝑙))(𝑠1) 

∙ 𝑔(𝑖 | 𝑠1)𝜇(𝑑𝑠1))𝜇(𝑑𝑖). 
 By the definition of 𝑇 iterated, the inner 

integral is 𝑇𝑚+1(𝑔(⋅ | 𝑙))(𝑖), so that  

𝑝𝑚+2(𝑙, 𝐵) = ∫  
𝐵

𝑇𝑚+1(𝑔(⋅ | 𝑙))(𝑖)𝜇(𝑑𝑖). 

 

Conclusion: By induction, for all 𝑚 ≥ 1,  

𝑝𝑚+1(𝑙, 𝐵) = ∫  
𝐵

𝑇𝑚(𝑔(⋅ | 𝑙))(𝑖)𝜇(𝑑𝑖), 

 i.e.,  𝑇𝑚(𝑔(⋅ | 𝑙))(𝑖)  is the density of  

𝑝𝑚+1(𝑙,⋅)  evaluated at 𝑖. 
Finally, using the definition of conditional 

expectation,  

𝐸[𝑔(𝑖 | 𝜂𝑛)| 𝜂𝑘 = 𝑙] = 

∫ 
𝑆

𝑔(𝑖 | 𝑠)𝑝𝑛−𝑘(𝑙, 𝑑𝑠) = 𝑇𝑛−𝑘(𝑔(⋅ | 𝑙))(𝑖). 

 

Usually, when computing time-averaged 

integrals involved in 𝐻2 norms, we need to 

show the convergence of sequences such as 

𝑙𝑖𝑚
𝜏→∝

1

𝜏
∑  

𝜏

𝑛=𝑘

∫ 
𝑆

𝜌(𝑛, 𝑙, 𝑖) ∫ 
𝑆

𝑔(𝑖|𝑠) ∙ 

(𝑇𝑛−𝑘(𝑔(. | 𝑙))) (𝑠)𝜇(𝑑𝑠)𝜇(𝑑𝑖) 

Our goal is to express the above limits in 

terms of the invariant probability measure of 

the kernel 𝑝. 

 

Theorem 1 Let {𝜂𝑛}𝑛≥0 be a uniformly ergodic 

Markov chain on a standard Borel space 

(𝑆, 𝐵(𝑆)) with transition density 𝑔(. | . ) with 

respect to a 𝜎 -finite measure 𝜇 , and let 𝜋 be 

its invariant density. Suppose that 𝜌(𝑛, 𝑙, 𝑗) is 

a nonnegative real sequence which is 𝑆 × 𝑆 

measurable and uniformly bounded: i.e. there 

is 𝑀 > 0 such that  |𝜌(𝑛, 𝑙, 𝑗)| ≤ 𝑀 for all 

𝑛, 𝑙, 𝑗. Then 

𝑙𝑖𝑚
𝜏→∝

1

𝜏
∑  

𝜏

𝑛=𝑘

∫ 
𝑆

𝜌(𝑛, 𝑙, 𝑖) ∫ 
𝑆

𝑔(𝑖|𝑠)

∙ (𝑇𝑛−𝑘(𝑔(. | 𝑙))) (𝑠)𝜇(𝑑𝑠)𝜇(𝑑𝑖) = 

𝑙𝑖𝑚
𝜏→∝

1

𝜏
∑  

𝜏

𝑛=𝑘

∫ 
𝑆

𝜌(𝑛, 𝑙, 𝑖) ∫ 
𝑆

 

𝑔(𝑖|𝑠)(𝜋)(𝑠)𝜇(𝑑𝑠)𝜇(𝑑𝑖), 

uniformly with respect to 𝑘 and 𝑙.  
 

Proof. Define the difference  

 

𝛥𝑛,𝑘,𝑙    = 

|∫  
𝑆

𝜌(𝑛, 𝑙, 𝑖) ∫  
𝑆

𝑔(𝑖 | 𝑠)[𝑇𝑛−𝑘(𝑔(. | 𝑙))(𝑠) −

𝜋(𝑠)]𝜇(𝑑𝑠)𝜇(𝑑𝑖)|. 
 

We recall that 0 ≤ 𝑔(𝑖 | 𝑠) < 𝐴,  

𝑇𝑛−𝑘(𝑔(. | 𝑙)) > 0 and |𝜌(𝑛, 𝑙, 𝑗)| ≤ 𝑀 for all 

𝑛, 𝑙, 𝑗. Then  

𝛥𝑛,𝑘,𝑙 ≤ 

∫ 
𝑆

|𝜌(𝑛, 𝑙, 𝑖)|| ∫ 
𝑆

𝑔(𝑖 | 𝑠)[𝑇𝑛−𝑘(𝑔(. | 𝑙))(𝑠)

− 𝜋(𝑠)]𝜇(𝑑𝑠)|𝜇(𝑑𝑖) ≤ 
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𝑀 ∫ 
𝑆

|∫ 
𝑆

𝑔(𝑖 | 𝑠) (𝑇𝑛−𝑘(𝑔(. | 𝑙))(𝑠)

− 𝜋(𝑠)) 𝜇(𝑑𝑠)| 𝜇(𝑑𝑖) = 

𝑀 ∫ 
𝑆

|𝑇𝑛−𝑘+1(𝑔(. | 𝑙))(𝑖) − 𝑇(𝜋)(𝑖)|𝜇(𝑑𝑖) 

We conclude that 

 

|𝛥𝑛,𝑘,𝑙| ≤ 𝑀 ∫  |𝑇𝑛−𝑘+1(𝑔(. | 𝑙))(𝑖) −
𝑆

  

𝜋(𝑖)|𝜇(𝑑𝑖)                 (2) 

                            

On the other hand  

 
‖𝑝𝑛(𝑙,⋅) − 𝛱(⋅)‖ 𝑇𝑉 = 

∫  
𝑆

|𝑝𝑛(𝑙, 𝑑𝑖) − 𝜋(𝑖)|𝜇(𝑑𝑖)= 

∫  
𝑆

|𝑇𝑛−1(𝑔(. | 𝑙))(𝑖) − 𝜋(𝑖)|𝜇(𝑑𝑖), 

 

where the last equality follows from Lemma 2. 
 

 By the uniform ergodicity of the Markov 

chain, it follows that there is 𝐶 > 0 and 𝜌 ∈
(0,1) such that for every 𝑙  

∫ 
𝑆

|𝑇𝑛(𝑔(. | 𝑙))(𝑠) − 𝜋(𝑠)|𝜇(𝑑𝑠) < 𝐶𝜌𝑛. 

We deduce from (2) that  

|𝛥𝑛,𝑘,𝑙| ≤ 𝑀𝐶𝜌𝑛−𝑘+1 

for every 𝑙 ∈ 𝑆. Finally, we see that the time-

averaged sum satisfies the following 

inequality:  

|
1

𝜏
∑  

𝜏

𝑛=𝑘

𝛥𝑛,𝑘,𝑙| ≤
1

𝜏
∑  

𝜏

𝑛=𝑘

𝑀𝐶𝜌𝑛−𝑘 ≤ 

𝑀𝐶

𝜏

1

1 − 𝜌
→ 0  as 𝜏 → ∞. 

 

Therefore, the time-averaged sum converges 

to zero as 𝜏 → ∞, which completes the proof. 

 

Remark 1. When the state space 𝑆 is 

countably infinite (for instance 𝑆 = {1,2, . . } ), 

we take as reference measure the counting 

measure. In this case, the transition densities 

with respect to the reference measure reduce to 

the standard transition probabilities of the 

Markov chain:  

 

𝑇𝑛−𝑘(𝑔(. | 𝑙))(𝑗) = 𝑃(𝜂𝑛+1 = 𝑗 | 𝜂𝑘 = 𝑙) 

              =   𝑝𝑛−𝑘+1(𝑙, 𝑗), 

 

and the invariant measure 𝜋 is a discrete 

probability distribution on 𝑆, represented by a 

vector 𝜋(𝑖). Accordingly, the following 

integrals over 𝑆 × 𝑆 that appear in the 

continuous formulation  

∫ 
𝑆

∫ 𝜌(𝑛, 𝑙, 𝑖)
𝑆

𝑔(𝑖 | 𝑠) ∙ 

(𝑇𝑛−𝑘(𝑔(. | 𝑙))) (𝑠)𝜇(𝑑𝑠)𝜇(𝑑𝑖) 

are replaced by double sums over 𝑆:  

 

∑  

𝑖∈𝑆

∑  

𝑠∈𝑆

𝜌(𝑛, 𝑙, 𝑖)𝑝1(𝑠, 𝑖)𝑝𝑛−𝑘+1(𝑙, 𝑠). 

Consequently, the main convergence result 

can be expressed in the discrete form  

𝑙𝑖𝑚
𝜏→∝

1

𝜏
∑  

𝜏

𝑛=𝑘

∑  

𝑖∈𝑆

∑  

𝑠∈𝑆

𝜌(𝑛, 𝑙, 𝑖)𝑝1(𝑠, 𝑖)𝑝𝑛−𝑘+1(𝑙, 𝑠)

= 𝑙𝑖𝑚
𝜏→∝

1

𝜏
∑  

𝜏

𝑛=𝑘

∑  

𝑖∈𝑆

∑  

𝑠∈𝑆

𝜌(𝑛, 𝑙, 𝑖)𝑝1(𝑠, 𝑖)𝜋(𝑠). 

We note that the above identity was 

established in [8] for the case of countably 

infinite 𝑆, under the weaker hypothesis that the 

Markov chain {𝜂𝑛}𝑛∈𝑁 is irreducible, 

aperiodic, and positive recurrent, and 

possesses an ergodic Markov subchain. In 

discrete spaces, these conditions suffice 

because positive recurrence guarantees the 

existence of a unique invariant probability 

measure, while irreducibility and aperiodicity 

ensure convergence to this stationary 

distribution from any initial state. In contrast, 

for Markov processes defined on general 

(possibly uncountable) state spaces, a stronger 

assumption such as uniform ergodicity is 

required. This condition ensures the existence 

of a global minorisation (Doeblin-type)[6] 

property providing uniform control over 

convergence rates across all initial states. 

Without such a condition, convergence may 

hold only pointwise in total variation but fail 

to be uniform, preventing the interchange of 

limits and integrals in expressions involving 

transition densities. 

 

5. CONCLUSIONS  

In this paper, we analysed the convergence of 

time-averaged functionals for uniformly 
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ergodic Markov chains defined on standard 

Borel spaces. By leveraging the properties of 

transition densities and uniform ergodicity, we 

demonstrated that the time-averaged 

expectations of bounded measurable 

functionals converge to the corresponding 

expectations under the invariant measure. This 

result provides a rigorous foundation for 

evaluating long-term performance in 

stochastic systems, including applications to 

H₂ norm computation in systems with 

Markovian jumps. The framework established 

here highlights the importance of uniform 

ergodicity for ensuring uniform convergence 

across all initial states, and it offers a basis for 

further research on more general classes of 

Markov processes and control systems.  
 

6. Further Research 
An interesting direction for future research is 

to investigate sufficient conditions under 

which uniform ergodicity of a Markov chain 

can be equivalently expressed in terms of 

convergence of transition densities, and to 

explore extensions of the current results to 

broader classes of functionals or to continuous-

time Markov processes on general state spaces. 
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