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ABSTRACT: This paper studies the long-term behavior of time-averaged functionals of Markov chains defined
on standard Borel state spaces, focusing on chains that admit transition densities with respect to a o-finite reference
measure and satisfy uniform ergodicity. We consider sequences of measurable functions that are uniformly
bounded across all states and time steps, and analyze the convergence of their time-averaged conditional
expectations given past states. Using the uniform ergodicity property, we rigorously show that these time-averaged
expectations converge to corresponding expressions computed with respect to the chain's invariant density. This
provides a general framework for evaluating steady-state behavior of functionals in stochastic systems, including
those arising in H> norm computations for systems with Markovian jumps. The use of standard Borel spaces as the
state space for the Markov chain ensures well-defined measurability and integrability, supporting the applicability
of these results to a wide class of Markov processes and stochastic control problems.
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contributions include full-information H>
control for Borel-measurable Markov jump
systems with multiplicative noises [4], H>
control for Markov jump linear systems (MJ-
LSs) with detector-based partial information
[5], and extensions to infinite-dimensional
MILs [8, 9]. Recent works also address
robustness and stability analysis for discrete-
time MJLS on Borel spaces [10, 11].

Despite these advances, a comprehensive
understanding of the limits and asymptotic
properties of the H norm for general Borel-
space Markov processes remains incomplete.

1. INTRODUCTION

The analysis of the H> norm in Markov
processes defined over general Borel state
spaces plays a fundamental role in
understanding and designing stochastic
dynamical systems. The H, norm quantifies a
system's performance in response to white-
noise disturbances and serves as a key tool in
optimal control and stability analysis. In
systems with Markovian jumps - where
transitions between states are governed by a
Markov chain taking values in a general Borel
space - a rigorous theoretical framework is

essential for evaluating and optimizing system
behavior.

Recent studies have emphasized the
importance of the asymptotic behavior of the
H> norm in such systems. For instance, Costa
and Figueiredo [2] investigated quadratic
control with partial information for discrete-
time jump systems with the Markov chain in a
general Borel space, while Hou and Zhang [3]
studied H2/Hoo control design for detectable
periodic Markov jump systems. Further

This paper aims to contribute to this area by
establishing rigorous convergence results for
time-averaged functionals of Markov chains
with general Borel state spaces, leveraging
uniform ergodicity conditions [6]. These
results provide a solid foundation for the
computation and optimization of the H> norm
in complex stochastic systems under
uncertainty, bridging the gap between
theoretical development and practical control
applications.
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2. PRELIMINARIES

Let (X, d) be a metric space with distance d,
and let this space be endowed with the
topology T(d) generated by open balls
Biy(x,e)={y€eX : d(xy)<e}

We recall that the Borel o -algebra B(X) is the
smallest o -algebra containing all open sets:
B(X) = o(T(Q)).
A Polish space is a complete and separable
metric space (X, d) and its Borel ¢ -algebra is
countably generated.
A standard Borel space (S, B) is a measurable
space, measurably isomorphic to a Borel
subset of a Polish space. That is, there is a
Polish space (X, d), a Borel subset X, € B(X)
and a bijection ¢ : S — X, such that both ¢
and ¢! are measurable and B =
¢~ (B(Xo))-
The following result is known (see [7] and the
references therein).
Proposition 1. Every standard Borel space
(S, B) has a countably generated o -algebra.
Proof. We know that the associated Polish
space (X, d) is separable, which implies that
its topology has a countable base {U,, },,en -
Hence the Borel o algebra on X, € X, B(X,)
is countably generated (as a sub — o -algebra
of B(X) ) and we can write

B(Xy) =c({U,NX, : n€N}).
Taking preimages under ¢, we have

B =0({¢p~" (U N Xo): mENY),
which shows that B is also countably
generated.

Let (02, F, P) be a probability space, (S, B(S))
be a standard Borel space and pu be a o -finite
measure defined on S. Let {1, },cy be a time-
homogeneous Markov chain with the state
space S. We recall that a minimal requirement
for defining a Markov chain on a general
measurable state space (S,B) is that B is
countably generated (see [6]) and this
condition is satisfied when (S,B(S)) is
standard Borel

We also assume that the following hypothesis
holds

H1: {n,}nen is a time-homogeneous Markov
chain such that:

1. its initial probability distribution has a

density fo > 0 that is absolutely integrable

with respect to u and P[n, € B] =

fB fo(s)u(ds);

2. it has a transition kernel

p(L,B) = P[Nn41 €EB |y =1,
€ B(S).

which admits a nonnegative density g(s | 1)

with respect to p, which is measurable on

SXS,ie.

p(l,B) = f 9(s | Du(ds), B € B(S),L €S,
B

and 0 < g(s | ) < A for some constant A >
0.
We note that [0 g(s | Du(ds) =1 and we

recall that a transition kernel p : S X
B(S) — [0,1] has the following properties:
p(s,) is a probability measure on (S, B(S)) for
every s € S, and p(+,B) is B(S) -measurable
for every B € B(S).
The n -step transition kernel satisfies the
Chapman--Kolmogorov equation

pmLB) = [ prdspTs ),
S

n,me€ N.

Let L, (1) be the linear space of all real valued,
u measurable functions f defined on S that
satisfy the condition [, |f(s)|u(ds) < c. We

define the linear operator
(THD:= fs g1 s)f(s)u(ds),

for any f € L;(u). According to [l], the
operator T : Li(u) = Li(p) is linear and
bounded and its adjoint P is defined on Lo, (@)
as

leS, B

(PF)(s):= f g(l | )FDudD.
S

If we denote m**1(1) = E[g(l | ni)] (see [1-
2]), we get

k() = E[Elg( | n)]ly,_,]
- [ [ 9 109G 1neucan
S

- f gt | DELgG | me_p)lu(di)
S
= T(ELg(i | ne_)D(D) = TGO D).

In the above computation, the expectation and
the integral can be interchanged by Tonelli’s
theorem, since the functions involved are
nonnegative and measurable. It follows that

284



Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

k() = T(@* ")), forall k > 1
We also note that m(l) = E[g(l | no)] =
Jo g | Dv(Du(di) = TW)(D) which
implies that 7% (1) = T*(v)(1) = 0.
It can be proved inductively (see [2]) that
Ji [ D]u(@d = [, TFW)Dudl) =
fs v(Du(dl) = 1, which implies that 7% (1) is
a density. Since P[n,41 € B] = E[P[Nn4+1 €
Blnn]] = fB E[g(i | 1) lu(di) =
fB "1 (Du(di) and it follows that 7™*1(1)
is the density of n,,,1 with respect to .

3. UNIFORM ERGODICITY

In this section, we recall some basic concepts
related to ergodicity and uniform ergodicity of
Markov chains on general state spaces. These
notions provide the theoretical framework for
studying the long-term behaviour and
convergence properties of the chain.

Definition 1. [6] For two probability measures
v; and v on a measurable space (S, B(S)), the
total variation distance between them is

defined as

lvi =Vl v = sup [vi(4) —v(4)l. (1)
A€EB(S)

If vi and v admit densities g, and g with
respect to a common reference measure A, then
two equivalent expressions of (1) are given by

lvi = vl 7v =

f 19:00) — g (O 1A(dx) =
S
sup |

| £e(9:00 - g@)acan
filfls1 Js

Definition 2. 4 probability measure Il on
(S,B(S)) is said to be invariant for the
transition kernel p if

e = | v BIEs)

S

VB € B(S).

Definition 3. The chain {n,}nen is said to be
ergodic if there is an invariant probability
measure I for the kernel p such that p™(l,-) -
[1(-) as n— o in total variation for all | € S.

Definition 4. /6] The chain {n,}nen is said to
be uniformly ergodic if there is an invariant
measure Il for the kernel p and the constants
C < o andp € (0,1) such that

“pn(s',) - H()” v = Cpn,VS €S, n=20.

For some equivalent formulations of uniform
ergodicity, we refer to Theorem 16.02 in [6].
In the rest of this paper, we will assume that
H1 and the following hypothesis hold:

H2: The Markov chain {n,},en is uniformly
ergodic.

The following result is known (see Proposition
4.1 from [1] and Theorem 16.2.1 from [6])

Lemma 1. There is an invariant probability
measure [1 for the kernel p which has the
following properties:
1) I1 is absolutely continuous with respect to p,
that is, there is a nonnegative function m €
L, (u) such that

(ds) = n(s)u(ds),

J, m(s)u(ds) = 1;

2) the density 7 is a fixed point of the operator
T,ie.

() =Tm)(),leS
3) there are positive constants C; < co and
p1 € (0,1) such that

f T (W) (s) — () |(ds) < Cyp}.
S

4. CONVERGENCE OF TIME-
AVERAGED FUNCTIONALS
UNDER UNIFORM ERGODICITY
CONDITIONS

Time-averaged functionals of a Markov chain
provide a natural way to quantify long-term
system behaviour and steady-state
performance. For chains on standard Borel
spaces, uniform ergodicity ensures
convergence that is independent of the initial
state. This section establishes that, under
uniform  ergodicity, the time-averaged
expectations of bounded  measurable
functionals converge to the corresponding
averages with respect to the chain’s invariant
measure, providing a rigorous foundation for
performance analysis in stochastic systems.

Lemma 2. Assume that hypotheses HI and H2
are satisfied. Then for any integersn >k = 0
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and i € S,T" *(g(-| D)(i) is the density of
the (n—k+1) -step transition kernel
p™k+1(1,-) evaluated at i. Moreover,

ElgC | no)l me =1 =T"*(g(- | D).

Proof. We proceed by induction on
m=n-—k.

Base step: m = 1. By Chapman--
Kolmogorov equation, the 2-step kernel is

p(l, B)
- f p(l, ds)p(sy, B)

= [[gtsil Dutdsy [ g 1sucan =
5 B
BYS

By definition of T, the inner integral is
exactly T(g(- | 1))(i). Hence,

p*(,B) = f T(9(- | D)(D)u(di),

showing that T(g(- | 1)) (i) is the density of

p*(L).

Inductive step: Assume that for some m > 1,
P = [ TM(gC | D)sn(sy)

B
Then, the (m + 2) -step transition kernel

satisfies

p™2(1, B) = f p(s, BYp™1 (1, ds)
S

_ f ( f T™(g(: | l))(sou(dsl))
S B

9 1s)u(dd)
— [ ([ e ;e
B S

g (| spu(dsy))u(di).
By the definition of T iterated, the inner
integral is T™*1(g(- | 1)) (i), so that

p" (L B) = fB T™ (g | DY(Op(dD).

Conclusion: By induction, for all m > 1,
p™ (1, B) =f T™(g( | DY(Ou(dD),
B

ie., T™(g(-| D)(@) is the density of
p™*1(l,") evaluated at .

Finally, using the definition of conditional
expectation,

ElgG | ndlne=1]=

fs g | Hp™ (L ds) =T (g(- | DID.

Usually, when computing time-averaged
integrals involved in H2 norms, we need to
show the convergence of sequences such as

Z fp(nzo] gGils) -

(o1 0)) @
Our goal is to express the above limits in

terms of the invariant probability measure of
the kernel p.

lim—
X T

Theorem 1 Let {n,, } 50 be a uniformly ergodic
Markov chain on a standard Borel space
(S, B(S)) with transition density g(. | .) with
respect to a o -finite measure | , and let T be
its invariant density. Suppose that p(n,l,j) is
a nonnegative real sequence which is S X S
measurable and uniformly bounded.: i.e. there
is M >0 such that |p(n,Lj)| <M for all
n,l,j. Then

2 jp(nzl)j g(ils)

'(Tn k(g( | l))) (s)u(ds)u(di) =

ij(nll)J

g(lIS) () (s)u(ds)u(di),

uniformly with respect to k and 1.

lim—
T-oX T

lim—-
T>X T

Proof. Define the difference

An,k,l

s L)) [, g | T (gC1 D)(s) -
(s)]u(ds)u(di)|.

We recall that 0 < g(i | s) < 4,
T"*(g(.| ) > 0and |p(n,1,j)| < M forall
n,l,j. Then

Appy <

f (LD f (i | DT *(gC1 D)(s)
S S
2 r()u(ds)|u(di) <
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M| [ a19 (e 0)e
—ﬂ(S))u(dS) pu(di) =

M [T (901 D)@ = T k)
S

We conclude that

|Anjer] < M [ 1T *2(g (| D)) -
()| (di)

On the other hand

2

Ip" (L) = T v =
Js o™ di) — (@ u(di)=
S 1T (g1 D)@ = 7@ |u(dd),

where the last equality follows from Lemma 2.

By the uniform ergodicity of the Markov
chain, it follows that there is C > 0 and p €
(0,1) such that for every [

[ (o€ D)® = 2 |utds) < cpn.
S

We deduce from (2) that
|An,k,l| < MCpn—k+1

for every [ € S. Finally, we see that the time-
averaged sum satisfies the following
inequality
1 n-k
;2 nkl Z MCp™™" <

n=
MC 1

—— >0 ast > oo.

T 1-p

Therefore, the time-averaged sum converges
to zero as T — oo, which completes the proof.

Remark 1. When the state space S is
countably infinite (for instance S = {1,2,..}),
we take as reference measure the counting
measure. In this case, the transition densities
with respect to the reference measure reduce to
the standard transition probabilities of the
Markov chain:

T (gCI D)D) =PWnsr =J | M =1
— p""k“(l,j),

and the invariant measure 7 is a discrete
probability distribution on S, represented by a
vector m(i). Accordingly, the following
integrals over S XS that appear in the
continuous formulation

fsfsp(n,z,i)g(i | 5)-

(T"*(gC1 D)) ©u(ds)u(di)

are replaced by double sums over S:

D, D, P LOp (s P HLS).

iES sE€S
Consequently, the main convergence result

can be expressed in the discrete form

re«rz Z Z p(n.1,0p* (s, )p" " (L s)

lim
n=k lES SES

1
:il_y)z; z z p(n, 1, Dpl(s, Dr(s).

n=k (€S Ss€S
We note that the above identity was

established in [8] for the case of countably
infinite S, under the weaker hypothesis that the
Markov chain  {n,}ney 1s irreducible,
aperiodic, and positive recurrent, and
possesses an ergodic Markov subchain. In
discrete spaces, these conditions suffice
because positive recurrence guarantees the
existence of a unique invariant probability
measure, while irreducibility and aperiodicity
ensure convergence to this stationary
distribution from any initial state. In contrast,
for Markov processes defined on general
(possibly uncountable) state spaces, a stronger
assumption such as uniform ergodicity is
required. This condition ensures the existence
of a global minorisation (Doeblin-type)[6]
property providing uniform control over
convergence rates across all initial states.
Without such a condition, convergence may
hold only pointwise in total variation but fail
to be uniform, preventing the interchange of
limits and integrals in expressions involving
transition densities.

5. CONCLUSIONS
In this paper, we analysed the convergence of
time-averaged functionals for uniformly
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ergodic Markov chains defined on standard
Borel spaces. By leveraging the properties of
transition densities and uniform ergodicity, we
demonstrated  that the time-averaged
expectations of bounded  measurable
functionals converge to the corresponding
expectations under the invariant measure. This
result provides a rigorous foundation for
evaluating  long-term  performance in
stochastic systems, including applications to
H> norm computation in systems with
Markovian jumps. The framework established
here highlights the importance of uniform
ergodicity for ensuring uniform convergence
across all initial states, and it offers a basis for
further research on more general classes of

Markov processes and control systems.

6. Further Research

An interesting direction for future research is
to investigate sufficient conditions under
which uniform ergodicity of a Markov chain
can be equivalently expressed in terms of
convergence of transition densities, and to
explore extensions of the current results to
broader classes of functionals or to continuous-
time Markov processes on general state spaces.
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